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1. Summary

The demand for cost-efficient sensors in monitoring production processes has surged, driven by the need
to optimize resource usage and enhance productivity. Industries are increasingly relying on sensors to gather
real-time data for better decision-making, particularly in agriculture, water quality management, and various
manufacturing processes. A frequent challenge observed in sensor technology is sensor drift, which can
lead to inaccurate readings over time. This drift not only compromises data integrity but also necessitates
frequent recalibrations, thereby increasing operational costs and resource consumption. Cost efficient ion
sensors with screen-printed electrodes measuring ion concentrations are demanded, particularly in sectors
like agriculture, water monitoring, and industrial processes but may be limited in measurement accuracy
due to sensor drift and variation in sensor calibration. To address these challenges posed by sensor drift, the
application of machine learning (ML) based algorithms at the device level presents a promising approach.
By leveraging ML techniques, it is possible to enhance the accuracy of ion sensors and compensate for drift
leading to more reliable monitoring systems. In this paper, results of ML-based drift compensation are
presented for the use case of ion sensors to demonstrate the potential benefits. Dedicated experiments
were conducted to characterize the concentration sensitivity and drift response of ion sensors, providing
essential data for algorithm development. Algorithms were developed for calibration and drift
compensation, utilizing regression and Kalman filter techniques, which provide real-time adjustments, thus
improving the accuracy of sensor readings.

What this Whitepaper provides:

= Qverview of the technology of printed potentiometric ion sensors.
* ML based approaches to address the calibration and drift compensation required for the
application:
= description of experiments to characterize the concentration response and drift
behavior of the sensors,
= algorithms for calibration and drift characterization,
= realization of a Kalman filter-based approach for real-time drift compensation.
= Environmental impact assessment of the Al system (training and operation).
= Discussion of the results and prospects for further development.

2. Introduction

lon sensors have become increasingly essential in various industries due to their ability to monitor specific
ion concentrations in real-time. Specifically, printed ion sensors are of high interest due to cost efficient
manufacturing. Figure 1 shows the printed ion sensor developed at the Fraunhofer IISB.

Reviews of printed ion sensor technology and their application areas can be found in [1-4]. Important
sectors of application of ion sensors include

e agriculture, where ion sensors are used to monitor nutrient levels (e.g., nitrate and potassium) in
soil and irrigation water, which helps to optimize fertilization and to improve crop yield,

e water quality monitoring, where ion sensors are applied for detecting harmful ions (e.g., heavy
metals, nitrates) in drinking water and wastewater treatment, ensuring compliance with health
regulations, and

e process monitoring in industry, where ion sensors are applied in various manufacturing processes
(e.g., chemical production and food processing) to monitor pH levels and ionic concentrations for
quality control.
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Figure 1: Printed ion sensor developed at the Fraunhofer 11SB (picture: Fraunhofer 1ISB).

Despite their benefits, several challenges hinder the widespread use of ion sensors:

e Sensor drift: lon sensors often exhibit drift over time, leading to inaccurate measurements and the
need for frequent calibration.

e Temperature sensitivity: Many ion sensors are sensitive to temperature changes, which can affect
their accuracy and reliability.

e Interference from other ions: The presence of other ions can interfere with the sensor readings,
particularly in complex matrices such as soil or wastewater.

e Limited selectivity: Some ion sensors may not be selective enough for specific ions, resulting in
cross-sensitivity and erroneous data.

Several approaches are being explored to address the challenges associated with ion sensors. Calibration
algorithms and the application of ML techniques can help to improve accuracy by identifying patterns and
compensating for drift and interference. Developing integrated temperature compensation mechanisms can
help mitigate the effects of temperature variations on sensor performance. Selective membranes may
enhance sensor selectivity and ion-selective electrodes can reduce interference from other ions.

3. Theoretical Background and Approach

Figure 2 shows the working principle of the printed ion sensor manufactured at the Fraunhofer IISB. The
printed ion sensor comprises four working electrodes made of silver (Ag) or carbon © and one reference
electrode made of silver/silver chloride (Ag/AgCl). The electrodes are encapsulated with a polymer-based
material and are manufactured using a screen-printing process. The ion selective working electrode is
created by pipetting an ionophore within a polymer matrix onto a suitable electrode (e.g. a graphite
electrode), allowing it to selectively interact with specific ions. The reference electrode is designed with a
defined polymer matrix that stabilizes its electrochemical potential. To characterize the concentration of
ions such as sodium (Na*), potassium (K*), and chloride (CI), an electromotive force (EMF) is measured
between the working electrode and a reference electrode. For initial sensor characterization, the EMF is
assessed between each sensor electrode and a silver/silver chloride (Ag/AgCl) glass reference electrode. This
measurement enables the determination of ion concentrations based on the generated EMF values.
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Figure 2: Working principle of the printed ion sensor.

The EMF is given by the Nernst equation as:
EMF = E° +~-In(a;) = E° +1In(10) - —log(a;) ~ E°+ 2,303 (—pC), with

In(10) = 2,303 and pC = — log(a;).

Here, E® is the standard electrode potential, R is the ideal gas constant, T is the absolute temperature, F is
Faraday's constant, and z; is the number of electrons transferred in the cell reaction for ion i. The activity
a; reflects the concentration of the ion i in the solution. The pC value describes the change of concentration
of an order of magnitude and is linearly proportional to the measured EMF. For a temperature of 298.15 K
(25 °Q), the sensitivity, i.e., the change in EMF per decade of concentration change (pC) is approximately
59 mV. For the printed ion sensors, the exact value for the sensitivity needs to be determined in a calibration
process using measurements at different levels of the concentration change in pC vs. the reference glass
electrode. The sensitivity may differ between the ion sensitive sensors and the EMF value measured with the
sensors reference electrode may also not be constant for different concentrations. Moreover, the sensors
exhibit an EMF drift when measuring over a longer period. In this work, regression and Kalman filter
techniques were developed to compensate for these effects to improve the accuracy of the sensor
measurements. The approach is described in detail in the next sections.

4. Drift Compensation for the Printed lon Sensors

4.1 Experimental Characterization of lon Sensor Drift

Experiments were conducted, which simulate a realistic scenario of fertilizing a field using a drip irrigation
system, with a concentration range defined between 1-10 mmol/l. To improve feasibility, the experimental
design incorporates a 30-minute fertilization phase followed by a 30-minute dilution phase, with 30-minute
constant concentration segments in between each phase. In real-world applications, the holding and
decreasing of concentration would occur over even significantly longer duration, typically spanning several
hours. Figure 3 shows the experimental setup to provide defined NaCl concentrations vs. time (a) and the
shapes of the provided concentration in mmol/ and -pC units are shown in Figure 3 (b — d).

A syringe pump was utilized to dispense a solution with a precisely defined concentration of NaCl at a set
flow rate. A magnetic stirrer is employed to ensure rapid distribution of the solution throughout the system.
The duration of the solution addition can be programmed to automatically achieve a predetermined target
concentration. During the experiment, the concentration between the points pC = 3 (0.1 mmol/l) and
pC = 2 (1 mmol/l) is varied, using a higher concentration solution of 100 mmol/l NaCl and a lower
concentration solution of distilled water. Each sensor comprised two Na* sensitive electrodes and one
reference electrode. The sensors were characterized vs. an Ag/AgCl glass reference electrode, and the EMF
was recorded with a sampling interval of two seconds. Overall, three sensors were investigated.
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Figure 3: Experimental setup to provide defined NaCl concentrations vs. time (a) and the shapes of the provided
concentration in mmol/ and -pC units (b—d) (picture: Fraunhofer I1ISB).

4.2 Data preparation

Data analysis was conducted in Python and supporting libraries. The recorded EMF data measured vs. the
Ag/AgCl glass reference electrode were converted to EMF values measured between the ion sensitive
electrodes of the sensor EMFy,4 ge as:

EMFyat,re = EMFyay, ag/agct — EMFRre, ag/agcy

where EMFyay ag/agc1 and EMFge ag/agc1 are the EMF values of the ion sensitive electrode and the reference
electrode measured vs. the Ag/AgCl glass reference electrode. Figure 4 (a), (c) show the raw EMF values for
experiment 1 and experiment 3, respectively. By calculation of the EMF vs. the reference electrode,
correlated trends and noise in the measurement vs. the Ag/AgCl glass reference electrode are compensated.
Still, the EMF indicates a linear drift vs. time and different initial points of the EMF.
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Figure 4: Raw EMF values for experiment 1 and experiment 3 (a), (c) and traces with adjusted offset to EMF = 0 at
t=0(b), (d).

To compensate for the offset in the initial points (Figure 4 (a), (c)), the offset was adjusted to 0 V, i.e., the
change in EMF is normalized to the EMF value at the initial concentration value (Figure 4 (b), (d)). The sensor
traces show similar trends but in detail still differ in their EMF values. Experiment 2, not shown for reasons
of space, showed similar trends but also less reproducibility in the regions where the solution was diluted,
as this was achieved by addition of distilled water and, if necessary, removing excess solution.

4.3 Calibration and Drift Compensation

As seen in Figure 4 (b), (d)., the sensors will not match the theoretical sensitivity values of 59 mV as expected
from theory when changing concentration from 1 to 10 mmol/l and moreover the sensitivity is different for
each selective electrode. Additionally, the traces show drifts and hence, the EMF values will not return to
the same values, whenever the concentration is reduced to the initial values. As an initial calibration of the
sensors was not available, the sensors were calibrated using the sensors trace data. The calibration of the
measured EMF traces to the theoretically expected EMF values was conducted by linear regression assuming
that the EMF traces are overlaid by a linear drift:

EMFy = EMFy .t+te=a- EMFadjusted +b-t+e= EMFadjusted, cal. T EMFy jinear + €,

where EMFy is the reference EMF as expected from the Nernst equation due to the introduced
concentration changes, EMFy . reflects the corresponding measured concentration response, EMF,gjysted
is the EMF adjustedto O V at t =0, t is time, a, b are model coefficients and ¢ is the remaining error. Hence,
the sensor traces can be separated into a calibrated EMF component EMF, gjysted, car. and a drift component
EMF4 jinear- Figure 5 shows the separation of the different trace components.
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Figure 5: Separation of the trace components to match the EMF values by the concentration changes to the values as
expected from the Nernst equation for the Na* sensitive electrode 1 of sensor 1 (experiment 1 (a), experiment 3 (c)).

The average and range values of the coefficients, which were determined for the different experiments,
sensors, and electrodes are summarized in Table 1. Typically, the coefficient a shows larger ranges for the
sensors indicating their difference in the sensitivity, when uncalibrated. The coefficient b for experiment 1
differs from those in experiment 2 and 3, which show more consistent values. The differences may be
induced by differences in the experiments due to inhomogeneous solution mixture in the small cells and
disturbances when diluting the solution and removing excess solution.

Table 1: Average and range values of the coefficients, which were determined for the different
experiments, sensors, and electrodes.

Experiment Coefficient Average Range
1 a 1.43 0.48
b -0.0104 mV/point 0.0157 mV/point
5 a 0.69 0.29
b 0.0010 mV/point 0.0023 mV/point
3 a 0.81 0.11
b 0.0013 mV/point 0.0007 mV/point

A Kalman filter was implemented to compensate the sensor drift assuming that the sensors are calibrated
and the drift rate for each sensor can be characterized by a linear trend as given in in Table 1 and drift rate
for each sensor can be derived as mean value over the sensors. The Kalman filter assumes an evolvement
of the state described by the model:

EMFk =F- EMFk_1 + B- uk_1 + wk—l'

Where F is the state transition matrix is applied to the previous state of the variable, B is the control-input
matrix, which is applied to the control vector B, and w is the process noise, which is assumed to be drawn
from a zero mean multivariate normal distribution. To estimate the different components, i.e., the calibrated
EMPF,gjusted, car., the drift component EMFg jinear, Which sum up to the expected concentration value of the
true concentration EMFy, ., the components for the calculation per data point k are arranged as:

EMKm, adjusted, cal., k 1 0 O EMKm, adjusted, cal, k—1 0 0 O 0
EMFy, ¢ k =[1 0 1f- EMFy, ¢ k-1 +10 0 Ol- o + wy,
EMFd, linear, k 0 01 EMFd, linear, k-1 0 0 b 1

where the drift is modeled by its previous value and the coefficient b in the control matrix. At time step k
a measurement z, of the true state EMF,, is conducted to:
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Zk = HEMFk +Vk,

where H is the measurement matrix and v, is the measurement noise, which is assumed to be zero mean
Gaussian white noise with covariance Ry EMF,gjysteq, cal. Can be measured, the measurement matrix is

given as:
H=[1 0 0]

Figure 6 shows the predictions for experiment 1 and 3, where the example is given for sensor 1 and
electrode 1. Figure 6 (a) and (c) show the predictions and true values of the adjusted EMF for calibrated
sensor (EMF,gjusted, car.), the drift component (EMFg jinear), and the EMF value due to the concentration
change (EMFy, ) if the coefficient b was exactly known, e.g., from the calibration process. Here, the
adjusted EMF (EMF,gjysted, car.), @nd drift component (EMFg jinear) are precisely predicted and the EMF value
due to the concentration change (EMFy ) is also well reflected. If the average value of b is used in the
predictions (Figure 6 (b), (d)) for the adjusted EMF (EMF,gjusted, ca1.) are also precise but the predictions for
the drift component and the EMF value due to the concentration change (EMFy jinear, EMFy, ) Will depend
on the deviation of the average of coefficient b from the precise value obtained for the sensor. Overall, if
the sensors are calibrated and characterized by their drift behavior, Kalman filtering provides an efficient
method for real-time drift compensation.
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Figure 6: Predictions of the EMF ,4jysted, car the drift component EMF 4 jipears and the true concentration value EMFy .
for experiment 1 and 3, where the example is given for sensor 1 and electrode 1. The predictions are given for the
case that the drift coefficient is known (a), (c) or is derived from an average over several measurements (b), (d).
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4.3 Environmental Impact Assessment of the Al System
For the environmental impact assessment, a concept was developed that comprises two components:

e Definition of the system architecture of the sensor system with integrated drift compensation.
e Life cycle assessment of the Al system (training and operation).

Figure 7 shows the architecture of the sensor system, consisting of the ion sensor with associated
measurement electronics, as well as the Al system for calibration and drift compensation. This architecture
forms the basis for the following life cycle assessment.
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lon sensor and measuring electronics Al system
(Printed) Electronics for . Electronics for . :
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Figure 7: System architecture of the sensor system with integrated drift compensation.

For the assessment of the Al system, two approaches to implementing the algorithms for calibration and
drift compensation were compared: the use of filter-based methods (e.g., Kalman filters) and the use of
neural networks. For both approaches, the factors of computational complexity, training duration, runtime,
and hardware requirements were considered, and the respective total energy requirements were estimated.
The results are summarized in Table 2 and support the approach pursued in the project of relying on filter-
based methods: The estimated energy requirement of less than 1 kWh over 10 years when using filter-
based methods contrasts with just under 50 kWh when using a neural network.

Table 2: Assessment of the Al system.

Factor

Filter-based methods

Neural Networks

Computational complexity

Moderate (linear algebra operations)

High (depending on architecture)

Training duration (see
below)

Short to moderate

Long (depending on architecture)

Runtime

Shorter than neural networks

Medium (for this application)

Hardware requirements

Powerful CPU (if necessary: GPU)

Specialized hardware (GPU, TPU)

Total energy consumption

Training:

Runtime / inference:
(Raspi 4: max. 15 W)

low
10 years: 810 Wh

1x 2h * 100 W = 200 Wh
One-time 200 Wh

24x/day * 5sec * 5 W
61 Wh per year

moderate
10 years: 49 kWh

3x/year * 5 h * 300 W
4,5 kWh per year

24x/Tag * 10 sec * 15 W
365 Wh per year
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5. Discussion

Drift compensation and calibration of ion sensors are critical for ensuring accurate measurements in various
sensor applications, e.g., for the investigated printed ion sensors. In the literature, several techniques were
developed and presented to detect and compensate for drift, which can be distinguished in the main
approaches as summarized in Table 3, each with specific algorithmic solutions [5]. Among the various
techniques employed, Kalman filtering has emerged as a prominent solution due to its ability to estimate
the state of a dynamic system from noisy observations, e.g., by capturing the sensor dynamics and
compensating for drift by continuously updating the state estimates based on new measurements. ML
techniques have gained traction in recent years for drift compensation in ion sensors. Approaches such as
neural networks, support vector machines, and regression techniques have been employed to model sensor
behavior and predict drift. This adaptability can be particularly beneficial in environments where sensor
characteristics may evolve over time. However, ML methods often require large datasets for training and
can be susceptible to overfitting, especially when the data is limited. Furthermore, the interpretability of ML
models can be a challenge, which is crucial for applications requiring clear insights into sensor behavior. In
contrast, Kalman filtering provides a more interpretable and leaner framework for understanding the sensor
dynamics and drift compensation. In addition, the environmental impact assessment showed the benefit of
this approach regarding total energy consumption.

Table 3: Main approaches to detect and compensate for sensor drift.

Approach Advantage Disadvantage
Manual recalibration of Simple e Time-consuming
sensors at regular intervals e Not applicable for many
Sensors
Automated calibration using Adaptation to e Not applicable to
fitted parametric models, e.g., characterizable trends changing behavior,
polynomial curves or nonlinear and unknown
signal-processing approaches influences without
refitting
e  Ground truth samples
required
Kalman filtering and other Efficient calculation e Predefined accurate
recursive estimation for modeling drift in model of the drift process
techniques real time required
ML learning and deep ML can learn drift e Computationally intensive
learning characteristics from e Higher environmental
data impact
e Large amount of data
required

The approaches for developing calibration and drift compensation algorithms presented here, base on the
balancing of practical constraints. The initial strategy prioritizes minimal data requirements for sensor
characterization and ML algorithm development, with inference designed to be computationally efficient
on edge devices. As larger datasets become available, e.g., after volume production, if needed, more
advanced ML techniques for drift compensation may be adopted. The algorithm and drift-compensation
design align with current trends in manufacturing reproducible potentiometric sensors, as reported in [6],
specifically addressing inter-sensor reproducibility of E® and concurrent drift mechanisms such as those
induced by water immersion. Enhancing sensor reproducibility is expected to enable more consistent
characterization of sensor properties and more robust drift models; our current studies already show
comparable values. This approach provides a strong foundation and flexible path for parallel sensor
optimization and extended characterization, including the dynamics under concentration changes or
dilution due to water exposure, as well as evaluation under real-world operating conditions.
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6. Conclusion and Outlook

This work demonstrates that lightweight, device-level ML—combining regression with Kalman filtering—
can effectively compensate for the drift in cost-efficient ion sensors with screen-printed electrodes.
Dedicated experiments quantified concentration sensitivity and drift behavior, enabling calibration and real-
time drift correction on edge hardware. The approach improves accuracy, addresses optimized calibration
and reduced recalibration frequency, and supports further development towards reliable, low-cost and low-
energy monitoring across agriculture, water quality, and industrial processes. These results indicate a viable
pathway to scalable, data-driven sensor operation without heavy computational or data demands. Looking
ahead, ongoing efforts to stabilize sensor materials, manufacturing reproducibility, and packaging are
expected to reduce drift and inter-sensor variability, further simplifying and strengthening the applicability
of on-device ML models. As larger datasets become available from pilots and volume deployments, drift-
compensation may be addressed for a broader data base and for improved transferability across sensor
batches.

Overall, our work successfully demonstrates the feasibility of lightweight, edge-deployable ML, which can
compensate for drift in low-cost ion sensors and bridges the gap from lab characterization application to
robust field performance for the transition to stable, scalable and environmentally friendly sensor
ecosystems.
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