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1. Summary 

The demand for cost-efficient sensors in monitoring production processes has surged, driven by the need 
to optimize resource usage and enhance productivity. Industries are increasingly relying on sensors to gather 
real-time data for better decision-making, particularly in agriculture, water quality management, and various 
manufacturing processes. A frequent challenge observed in sensor technology is sensor drift, which can 
lead to inaccurate readings over time. This drift not only compromises data integrity but also necessitates 
frequent recalibrations, thereby increasing operational costs and resource consumption. Cost efficient ion 
sensors with screen-printed electrodes measuring ion concentrations are demanded, particularly in sectors 
like agriculture, water monitoring, and industrial processes but may be limited in measurement accuracy 
due to sensor drift and variation in sensor calibration. To address these challenges posed by sensor drift, the 
application of machine learning (ML) based algorithms at the device level presents a promising approach. 
By leveraging ML techniques, it is possible to enhance the accuracy of ion sensors and compensate for drift 
leading to more reliable monitoring systems. In this paper, results of ML-based drift compensation are 
presented for the use case of ion sensors to demonstrate the potential benefits. Dedicated experiments 
were conducted to characterize the concentration sensitivity and drift response of ion sensors, providing 
essential data for algorithm development. Algorithms were developed for calibration and drift 
compensation, utilizing regression and Kalman filter techniques, which provide real-time adjustments, thus 
improving the accuracy of sensor readings. 

 

2. Introduction 

Ion sensors have become increasingly essential in various industries due to their ability to monitor specific 
ion concentrations in real-time. Specifically, printed ion sensors are of high interest due to cost efficient 
manufacturing. Figure 1 shows the printed ion sensor developed at the Fraunhofer IISB. 

Reviews of printed ion sensor technology and their application areas can be found in [1–4]. Important 
sectors of application of ion sensors include  

• agriculture, where ion sensors are used to monitor nutrient levels (e.g., nitrate and potassium) in 
soil and irrigation water, which helps to optimize fertilization and to improve crop yield, 

• water quality monitoring, where ion sensors are applied for detecting harmful ions (e.g., heavy 
metals, nitrates) in drinking water and wastewater treatment, ensuring compliance with health 
regulations, and 

• process monitoring in industry, where ion sensors are applied in various manufacturing processes 
(e.g., chemical production and food processing) to monitor pH levels and ionic concentrations for 
quality control. 

 

What this Whitepaper provides: 

▪ Overview of the technology of printed potentiometric ion sensors. 

▪ ML based approaches to address the calibration and drift compensation required for the 
application: 

▪ description of experiments to characterize the concentration response and drift 
behavior of the sensors, 

▪ algorithms for calibration and drift characterization, 

▪ realization of a Kalman filter-based approach for real-time drift compensation. 

▪ Environmental impact assessment of the AI system (training and operation). 

▪ Discussion of the results and prospects for further development. 
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Figure 1: Printed ion sensor developed at the Fraunhofer IISB (picture: Fraunhofer IISB). 

Despite their benefits, several challenges hinder the widespread use of ion sensors: 

• Sensor drift: Ion sensors often exhibit drift over time, leading to inaccurate measurements and the 
need for frequent calibration. 

• Temperature sensitivity: Many ion sensors are sensitive to temperature changes, which can affect 
their accuracy and reliability. 

• Interference from other ions: The presence of other ions can interfere with the sensor readings, 
particularly in complex matrices such as soil or wastewater. 

• Limited selectivity: Some ion sensors may not be selective enough for specific ions, resulting in 
cross-sensitivity and erroneous data. 

Several approaches are being explored to address the challenges associated with ion sensors. Calibration 
algorithms and the application of ML techniques can help to improve accuracy by identifying patterns and 
compensating for drift and interference. Developing integrated temperature compensation mechanisms can 
help mitigate the effects of temperature variations on sensor performance. Selective membranes may 
enhance sensor selectivity and ion-selective electrodes can reduce interference from other ions. 

3. Theoretical Background and Approach 

Figure 2 shows the working principle of the printed ion sensor manufactured at the Fraunhofer IISB. The 
printed ion sensor comprises four working electrodes made of silver (Ag) or carbon © and one reference 
electrode made of silver/silver chloride (Ag/AgCl). The electrodes are encapsulated with a polymer-based 
material and are manufactured using a screen-printing process. The ion selective working electrode is 
created by pipetting an ionophore within a polymer matrix onto a suitable electrode (e.g. a graphite 
electrode), allowing it to selectively interact with specific ions. The reference electrode is designed with a 
defined polymer matrix that stabilizes its electrochemical potential. To characterize the concentration of 
ions such as sodium (Na+), potassium (K+), and chloride (Cl-), an electromotive force (EMF) is measured 
between the working electrode and a reference electrode. For initial sensor characterization, the EMF is 
assessed between each sensor electrode and a silver/silver chloride (Ag/AgCl) glass reference electrode. This 
measurement enables the determination of ion concentrations based on the generated EMF values. 
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Figure 2: Working principle of the printed ion sensor. 

The EMF is given by the Nernst equation as: 

𝐸𝑀𝐹 = 𝐸0 +
𝑅𝑇

𝐹𝑧𝑖
ln(𝑎𝑖 ) = 𝐸0 + ln(10) ∙

𝑅𝑇

𝐹𝑧𝑖
log(𝑎𝑖 )  ≈  𝐸0 + 2,303

𝑅𝑇

𝐹𝑧𝑖
(−pC),  with 

ln(10) ≈ 2,303 and pC = − log(𝑎𝑖 ). 

Here, 𝐸0 is the standard electrode potential, 𝑅 is the ideal gas constant, 𝑇 is the absolute temperature, 𝐹 is 
Faraday's constant, and 𝑧𝑖 is the number of electrons transferred in the cell reaction for ion 𝑖. The activity 
𝑎𝑖  reflects the concentration of the ion 𝑖 in the solution. The pC value describes the change of concentration 
of an order of magnitude and is linearly proportional to the measured EMF. For a temperature of 298.15 K 
(25 °C), the sensitivity, i.e., the change in EMF per decade of concentration change (pC) is approximately 
59 mV. For the printed ion sensors, the exact value for the sensitivity needs to be determined in a calibration 
process using measurements at different levels of the concentration change in pC vs. the reference glass 
electrode. The sensitivity may differ between the ion sensitive sensors and the EMF value measured with the 
sensors reference electrode may also not be constant for different concentrations. Moreover, the sensors 
exhibit an EMF drift when measuring over a longer period. In this work, regression and Kalman filter 
techniques were developed to compensate for these effects to improve the accuracy of the sensor 
measurements. The approach is described in detail in the next sections. 

4. Drift Compensation for the Printed Ion Sensors 

4.1 Experimental Characterization of Ion Sensor Drift 

Experiments were conducted, which simulate a realistic scenario of fertilizing a field using a drip irrigation 
system, with a concentration range defined between 1-10 mmol/l. To improve feasibility, the experimental 
design incorporates a 30-minute fertilization phase followed by a 30-minute dilution phase, with 30-minute 
constant concentration segments in between each phase. In real-world applications, the holding and 
decreasing of concentration would occur over even significantly longer duration, typically spanning several 
hours. Figure 3 shows the experimental setup to provide defined NaCl concentrations vs. time (a) and the 
shapes of the provided concentration in mmol/ and -pC units are shown in Figure 3 (b – d). 

A syringe pump was utilized to dispense a solution with a precisely defined concentration of NaCl at a set 
flow rate. A magnetic stirrer is employed to ensure rapid distribution of the solution throughout the system. 
The duration of the solution addition can be programmed to automatically achieve a predetermined target 
concentration. During the experiment, the concentration between the points pC =  3 (0.1 mmol/l) and 
pC =  2 (1 mmol/l) is varied, using a higher concentration solution of 100 mmol/l NaCl and a lower 
concentration solution of distilled water. Each sensor comprised two Na+ sensitive electrodes and one 
reference electrode. The sensors were characterized vs. an Ag/AgCl glass reference electrode, and the EMF 
was recorded with a sampling interval of two seconds. Overall, three sensors were investigated. 
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a) b) 

  
c) d) 

Figure 3: Experimental setup to provide defined NaCl concentrations vs. time (a) and the shapes of the provided 
concentration in mmol/ and -pC units (b–d) (picture: Fraunhofer IISB). 

4.2 Data preparation 

Data analysis was conducted in Python and supporting libraries. The recorded EMF data measured vs. the 
Ag/AgCl glass reference electrode were converted to EMF values measured between the ion sensitive 
electrodes of the sensor 𝐸𝑀𝐹Na+, Re  as: 

𝐸𝑀𝐹Na+, Re = 𝐸𝑀𝐹Na+, Ag/AgCl − 𝐸𝑀𝐹Re, Ag/AgCl, 

where 𝐸𝑀𝐹Na+, Ag/AgCl and 𝐸𝑀𝐹Re, Ag/AgCl  are the EMF values of the ion sensitive electrode and the reference 

electrode measured vs. the Ag/AgCl glass reference electrode. Figure 4 (a), (c) show the raw EMF values for 
experiment 1 and experiment 3, respectively. By calculation of the EMF vs. the reference electrode, 
correlated trends and noise in the measurement vs. the Ag/AgCl glass reference electrode are compensated. 
Still, the EMF indicates a linear drift vs. time and different initial points of the EMF. 
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a) b) 

  
c) d) 

Figure 4: Raw EMF values for experiment 1 and experiment 3 (a), (c) and traces with adjusted offset to EMF = 0 at 
t = 0 (b), (d). 

To compensate for the offset in the initial points (Figure 4 (a), (c)), the offset was adjusted to 0 V, i.e., the 
change in EMF is normalized to the EMF value at the initial concentration value (Figure 4 (b), (d)). The sensor 
traces show similar trends but in detail still differ in their EMF values. Experiment 2, not shown for reasons 
of space, showed similar trends but also less reproducibility in the regions where the solution was diluted, 
as this was achieved by addition of distilled water and, if necessary, removing excess solution. 

4.3 Calibration and Drift Compensation 

As seen in Figure 4 (b), (d)., the sensors will not match the theoretical sensitivity values of 59 mV as expected 
from theory when changing concentration from 1 to 10 mmol/l and moreover the sensitivity is different for 
each selective electrode. Additionally, the traces show drifts and hence, the EMF values will not return to 
the same values, whenever the concentration is reduced to the initial values. As an initial calibration of the 
sensors was not available, the sensors were calibrated using the sensors trace data. The calibration of the 
measured EMF traces to the theoretically expected EMF values was conducted by linear regression assuming 
that the EMF traces are overlaid by a linear drift: 

𝐸𝑀𝐹N = 𝐸𝑀𝐹N, 𝑐 + 𝜀 = 𝑎 ∙ 𝐸𝑀𝐹adjusted + 𝑏 ∙ 𝑡 + 𝜀 = 𝐸𝑀𝐹adjusted, cal. + 𝐸𝑀𝐹d, linear + 𝜀, 

where 𝐸𝑀𝐹N is the reference EMF as expected from the Nernst equation due to the introduced 
concentration changes, 𝐸𝑀𝐹N, 𝑐 reflects the corresponding measured concentration response, 𝐸𝑀𝐹adjusted 

is the EMF adjusted to 0 V at 𝑡 = 0, 𝑡 is time, 𝑎,  𝑏 are model coefficients and 𝜀 is the remaining error. Hence, 
the sensor traces can be separated into a calibrated EMF component 𝐸𝑀𝐹adjusted, cal. and a drift component 

𝐸𝑀𝐹d, linear. Figure 5 shows the separation of the different trace components. 
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a) b) 

Figure 5: Separation of the trace components to match the EMF values by the concentration changes to the values as 
expected from the Nernst equation for the Na+ sensitive electrode 1 of sensor 1 (experiment 1 (a), experiment 3 (c)). 

The average and range values of the coefficients, which were determined for the different experiments, 
sensors, and electrodes are summarized in Table 1. Typically, the coefficient a shows larger ranges for the 
sensors indicating their difference in the sensitivity, when uncalibrated. The coefficient b for experiment 1 
differs from those in experiment 2 and 3, which show more consistent values. The differences may be 
induced by differences in the experiments due to inhomogeneous solution mixture in the small cells and 
disturbances when diluting the solution and removing excess solution. 

 
Table 1: Average and range values of the coefficients, which were determined for the different 
experiments, sensors, and electrodes. 

Experiment Coefficient Average Range 

1 
a 1.43 0.48 
b -0.0104 mV/point 0.0157 mV/point 

2 
a 0.69 0.29 
b 0.0010 mV/point 0.0023 mV/point 

3 
a 0.81 0.11 
b 0.0013 mV/point 0.0007 mV/point 

A Kalman filter was implemented to compensate the sensor drift assuming that the sensors are calibrated 
and the drift rate for each sensor can be characterized by a linear trend as given in in Table 1 and drift rate 
for each sensor can be derived as mean value over the sensors. The Kalman filter assumes an evolvement 
of the state described by the model:  

𝐄𝐌𝐅𝑘 = 𝐅 ∙ 𝐄𝐌𝐅𝑘−1 + 𝐁 ∙ 𝒖𝒌−𝟏 +  𝐰𝒌−𝟏, 

Where 𝐅 is the state transition matrix is applied to the previous state of the variable, 𝐁 is the control-input 
matrix, which is applied to the control vector 𝐁, and 𝐰 is the process noise, which is assumed to be drawn 
from a zero mean multivariate normal distribution. To estimate the different components, i.e., the calibrated 
𝐸𝑀𝐹adjusted, cal., the drift component 𝐸𝑀𝐹d, linear, which sum up to the expected concentration value of the 

true concentration 𝐸𝑀𝐹N, 𝑐, the components for the calculation per data point 𝑘 are arranged as: 

[

𝐸𝑀𝐾m, adjusted, cal., 𝑘

𝐸𝑀𝐹N, c, 𝑘

𝐸𝑀𝐹d, linear, 𝑘 

] = [
1 0 0
1 0 1
0 0 1

] ∙ [

𝐸𝑀𝐾m, adjusted, cal., 𝑘−1

𝐸𝑀𝐹N, c, 𝑘−1

𝐸𝑀𝐹d, linear, 𝑘−1 

] + [
0 0 0
0 0 0
0 0 𝑏

] ∙ [
0
0
1

] +  𝐰𝒌, 

where the drift is modeled by its previous value and the coefficient 𝑏 in the control matrix. At time step 𝑘 
a measurement 𝐳𝑘 of the true state 𝐄𝐌𝐅𝑘 is conducted to:  
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𝐳𝑘 = 𝐇 ∙ 𝐄𝐌𝐅𝑘 + 𝐯𝒌, 

where 𝐇 is the measurement matrix and 𝐯𝒌 is the measurement noise, which is assumed to be zero mean 
Gaussian white noise with covariance 𝐑𝑘𝐸𝑀𝐹adjusted, cal. can be measured, the measurement matrix is 

given as: 

𝐇 = [1 0 0]. 

Figure 6 shows the predictions for experiment 1 and 3, where the example is given for sensor 1 and 
electrode 1. Figure 6 (a) and (c) show the predictions and true values of the adjusted EMF for calibrated 
sensor (𝐸𝑀𝐹adjusted, cal.), the drift component (𝐸𝑀𝐹d, linear), and the EMF value due to the concentration 

change (𝐸𝑀𝐹N, 𝑐) if the coefficient 𝑏 was exactly known, e.g., from the calibration process. Here, the 

adjusted EMF (𝐸𝑀𝐹adjusted, cal.), and drift component (𝐸𝑀𝐹d, linear) are precisely predicted and the EMF value 

due to the concentration change (𝐸𝑀𝐹N, 𝑐) is also well reflected. If the average value of 𝑏 is used in the 

predictions (Figure 6 (b), (d)) for the adjusted EMF (𝐸𝑀𝐹adjusted, cal.) are also precise but the predictions for 

the drift component and the EMF value due to the concentration change (𝐸𝑀𝐹d, linear, 𝐸𝑀𝐹N, 𝑐) will depend 

on the deviation of the average of coefficient 𝑏 from the precise value obtained for the sensor. Overall, if 
the sensors are calibrated and characterized by their drift behavior, Kalman filtering provides an efficient 
method for real-time drift compensation. 

  

  
a) b) 

  
c) d) 

Figure 6: Predictions of the 𝑬𝑴𝑭𝐚𝐝𝐣𝐮𝐬𝐭𝐞𝐝, 𝐜𝐚𝐥., the drift component 𝑬𝑴𝑭𝐝, 𝐥𝐢𝐧𝐞𝐚𝐫, and the true concentration value 𝑬𝑴𝑭𝐍, 𝒄 

for experiment 1 and 3, where the example is given for sensor 1 and electrode 1. The predictions are given for the 
case that the drift coefficient is known (a), (c) or is derived from an average over several measurements (b), (d). 
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4.3 Environmental Impact Assessment of the AI System 

For the environmental impact assessment, a concept was developed that comprises two components: 

• Definition of the system architecture of the sensor system with integrated drift compensation. 

• Life cycle assessment of the AI system (training and operation). 

Figure 7 shows the architecture of the sensor system, consisting of the ion sensor with associated 
measurement electronics, as well as the AI system for calibration and drift compensation. This architecture 
forms the basis for the following life cycle assessment. 

 

Figure 7: System architecture of the sensor system with integrated drift compensation. 

For the assessment of the AI system, two approaches to implementing the algorithms for calibration and 
drift compensation were compared: the use of filter-based methods (e.g., Kalman filters) and the use of 
neural networks. For both approaches, the factors of computational complexity, training duration, runtime, 
and hardware requirements were considered, and the respective total energy requirements were estimated. 
The results are summarized in Table 2 and support the approach pursued in the project of relying on filter-
based methods: The estimated energy requirement of less than 1 kWh over 10 years when using filter-
based methods contrasts with just under 50 kWh when using a neural network. 

Table 2: Assessment of the AI system. 

Factor Filter-based methods Neural Networks 

Computational complexity Moderate (linear algebra operations) High (depending on architecture) 

Training duration (see 

below)   
Short to moderate Long (depending on architecture) 

Runtime     Shorter than neural networks Medium (for this application) 

Hardware requirements     Powerful CPU (if necessary: GPU) Specialized hardware (GPU, TPU) 

Total energy consumption 

 

 

Training: 

 

 

Runtime / inference: 

(Raspi 4: max. 15 W) 

low 

10 years: 810 Wh 

 

1x 2h * 100 W = 200 Wh 

One-time 200 Wh 

 

24x/day * 5 sec * 5 W  

61 Wh per year 

moderate 

10 years: 49 kWh 

 

3x/year * 5 h * 300 W 

4,5 kWh per year 

 

24x/Tag * 10 sec * 15 W 

365 Wh per year 
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5. Discussion 

Drift compensation and calibration of ion sensors are critical for ensuring accurate measurements in various 
sensor applications, e.g., for the investigated printed ion sensors. In the literature, several techniques were 
developed and presented to detect and compensate for drift, which can be distinguished in the main 
approaches as summarized in Table 3, each with specific algorithmic solutions [5]. Among the various 
techniques employed, Kalman filtering has emerged as a prominent solution due to its ability to estimate 
the state of a dynamic system from noisy observations, e.g., by capturing the sensor dynamics and 
compensating for drift by continuously updating the state estimates based on new measurements. ML 
techniques have gained traction in recent years for drift compensation in ion sensors. Approaches such as 
neural networks, support vector machines, and regression techniques have been employed to model sensor 
behavior and predict drift. This adaptability can be particularly beneficial in environments where sensor 
characteristics may evolve over time. However, ML methods often require large datasets for training and 
can be susceptible to overfitting, especially when the data is limited. Furthermore, the interpretability of ML 
models can be a challenge, which is crucial for applications requiring clear insights into sensor behavior. In 
contrast, Kalman filtering provides a more interpretable and leaner framework for understanding the sensor 
dynamics and drift compensation. In addition, the environmental impact assessment showed the benefit of 
this approach regarding total energy consumption. 

Table 3: Main approaches to detect and compensate for sensor drift. 

Approach Advantage Disadvantage 

Manual recalibration of 
sensors at regular intervals 

Simple • Time-consuming 

• Not applicable for many 
sensors 

Automated calibration using 
fitted parametric models, e.g., 
polynomial curves or 
signal‑processing approaches 

Adaptation to 
characterizable trends 

• Not applicable to 
changing behavior, 
nonlinear and unknown 
influences without 
refitting 

• Ground truth samples 
required 

Kalman filtering and other 
recursive estimation 
techniques  

Efficient calculation 
for modeling drift in 
real time 

• Predefined accurate 
model of the drift process 
required 

ML learning and deep 
learning 

ML can learn drift 
characteristics from 
data 

• Computationally intensive 

• Higher environmental 
impact 

• Large amount of data 
required 

 

The approaches for developing calibration and drift compensation algorithms presented here, base on the 
balancing of practical constraints. The initial strategy prioritizes minimal data requirements for sensor 
characterization and ML algorithm development, with inference designed to be computationally efficient 
on edge devices. As larger datasets become available, e.g., after volume production, if needed, more 
advanced ML techniques for drift compensation may be adopted. The algorithm and drift-compensation 
design align with current trends in manufacturing reproducible potentiometric sensors, as reported in [6], 
specifically addressing inter-sensor reproducibility of 𝐸0 and concurrent drift mechanisms such as those 
induced by water immersion. Enhancing sensor reproducibility is expected to enable more consistent 
characterization of sensor properties and more robust drift models; our current studies already show 
comparable values. This approach provides a strong foundation and flexible path for parallel sensor 
optimization and extended characterization, including the dynamics under concentration changes or 
dilution due to water exposure, as well as evaluation under real-world operating conditions. 
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6. Conclusion and Outlook 

This work demonstrates that lightweight, device-level ML—combining regression with Kalman filtering—
can effectively compensate for the drift in cost-efficient ion sensors with screen-printed electrodes. 
Dedicated experiments quantified concentration sensitivity and drift behavior, enabling calibration and real-
time drift correction on edge hardware. The approach improves accuracy, addresses optimized calibration 
and reduced recalibration frequency, and supports further development towards reliable, low-cost and low-
energy monitoring across agriculture, water quality, and industrial processes. These results indicate a viable 
pathway to scalable, data-driven sensor operation without heavy computational or data demands. Looking 
ahead, ongoing efforts to stabilize sensor materials, manufacturing reproducibility, and packaging are 
expected to reduce drift and inter-sensor variability, further simplifying and strengthening the applicability 
of on-device ML models. As larger datasets become available from pilots and volume deployments, drift-
compensation may be addressed for a broader data base and for improved transferability across sensor 
batches.  

Overall, our work successfully demonstrates the feasibility of lightweight, edge-deployable ML, which can 
compensate for drift in low-cost ion sensors and bridges the gap from lab characterization application to 
robust field performance for the transition to stable, scalable and environmentally friendly sensor 
ecosystems. 
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